
2024/05/02 03:30 1/14 The Joy Of Clojure

Various Ways - http://jace.link/

The Joy Of Clojure

Clojure
일급 클래스

고차 함수

순수 함수

인자 이름 지정

closure
FSA
매크로

제어 구조

DSL

인용

문법 인용 (`)

비인용 (~)

평가 이음 기호 (~@)

keyword

:pre, :post

유용한 웹 사이트 모록

https://github.com/joyofclojure/book-source
https://github.com/ksseono/the-joy-of-clojure
https://github.com/clojure-kr/translation
https://eunmin.gitbooks.io/clojure-for-beginners/content
https://github.com/clojure-kr/clojure-complete
http://clojuredocs.org
http://www.4clojure.com

Docs

Clojure CLI tools
Leiningen
Boot

1. Clojure philosophy

http://jace.link/open/clojure
http://jace.link/open/%EC%9D%BC%EA%B8%89-%ED%81%B4%EB%9E%98%EC%8A%A4
http://jace.link/open/%EA%B3%A0%EC%B0%A8-%ED%95%A8%EC%88%98
http://jace.link/open/%EC%88%9C%EC%88%98-%ED%95%A8%EC%88%98
http://jace.link/open/%EC%9D%B8%EC%9E%90-%EC%9D%B4%EB%A6%84-%EC%A7%80%EC%A0%95
http://jace.link/open/closure
http://jace.link/open/fsa
http://jace.link/open/%EB%A7%A4%ED%81%AC%EB%A1%9C
http://jace.link/open/%EC%A0%9C%EC%96%B4-%EA%B5%AC%EC%A1%B0
http://jace.link/open/dsl
http://jace.link/open/k_pre
http://jace.link/open/k_post
https://github.com/joyofclojure/book-source
https://github.com/ksseono/the-joy-of-clojure
https://github.com/clojure-kr/translation
https://eunmin.gitbooks.io/clojure-for-beginners/content
https://github.com/clojure-kr/clojure-complete
http://clojuredocs.org
http://www.4clojure.com
http://jace.link/open/clojure-cli-tools
http://jace.link/open/leiningen
http://jace.link/open/boot

Last update: 2021/12/10 00:59 open:the-joy-of-clojure http://jace.link/open/the-joy-of-clojure

http://jace.link/ Printed on 2024/05/02 03:30

2. Drinking from the Clojure firehose

2.4 Vars

2.5 Locals, loops, and blocks

2.5.3 Loops

RECUR

Clojure has a special form called recur that's specifically for tail recursion:

(defn print-down-from [x]
 (when (pos? x)
 (println x)
 (recur (dec x))))

(defn sum-down-from [sum x]
 (if (pos? x)
 (recur (+ sum x) (dec x))
 sum))
(sum-down-from 0 10)
;=> 55

LOOP

To help, there's a loop form that acts exactly like let but provides a target for recur to jump to. It's
used like this:

snippet.clojure

(defn sum-down-from [initial-x]
 (loop [sum 0, x initial-x]
 (if (pos? x)
 (recur (+ sum x) (dec x))
 sum)))

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=2

2024/05/02 03:30 3/14 The Joy Of Clojure

Various Ways - http://jace.link/

2.9 Namespaces

Clojure also provide a Var *ns* that holds the value of the current namespace.

3. Dipping our toes in the pool

This chapter covers
 * Truthiness
 * Nil punning
 * Destructuring
 * Use the REPL to experiment

First we'll explore Clojure's straightforward notions of Truthiness1), or the distinctions between values
considered logical true and those considered logical false.

Finally, we'll sit down and pair-program together to gain an appreciation for the power of Clojure's
Read-Eval-Print-Loop (REPL).

3.1 Truthiness

Truthfulness may be an important virtue, but it doesn't come up much in programming. On the other
hand, Truthiness, or the matter of logical truth values in Clojure, is critical.
Clojure has one Boolean context: the test expression of the if form. Other forms that expect Booleans
–and, or, when, and so forth– are macros built on top of if. It's here that Truthiness matters.

(if true :truthy :falsey) ;=> :truthy
(if [] :truthy :falsey) ;=> :truthy
(if nil :truthy :falsey) ;=> :falsey
(if false :truthy :falsey) ;=> :falsey

Every object is “true” all the time, unless it's nil or false.

3.1.2 Don't create Boolean objects

(if (Boolean/valueOf "false") :truthy :falsey)
;=> :falsey

3.1.3 nil versus false

3.2 Nil pun with care

Last update: 2021/12/10 00:59 open:the-joy-of-clojure http://jace.link/open/the-joy-of-clojure

http://jace.link/ Printed on 2024/05/02 03:30

Because empty collections act like true in Boolean contexts, we need an idiom for testing whether
there's anything in a collection to process. Thankfully, Clojure provides just such a technique:

snippet.clojure

(seq [1 2 3])
;=> (1 2 3)

(seq [])
;=> nIL

The seq function returns a sequence view of a collection, or nil if the collection is empty, In a
language like Common Lisp, an empty list acts as a false value and can be used as a pun (a term with
the same behavior) for such in determining a looping termination.

PREFER DOSEQ

An important point not mentioned is that it would be best to use doseq in this case, but that wouldn't
allow us to illustrate our overarching points: the Clojure forms named with do at the start (doseq,
dotimes, do, and so on) are intented for side-effects in their bodies and generally return nil as their
result.

3.3 Destructuring

PATTERN MATCHING

Destructuring is loosely related to pattern matching found in Haskell, KRC, or Scala, but much more
limited in scope. For more full-featured pattern matching in Clojure, consider using
http://github.com/dcolthorp/matchure, which may in the future be included in contrib as
clojure.core.match

3.3.2 Destructuring with a vector

So let's try that again, but use destructuring with let to create more convenient locals for the parts of
Guy's name:

(let [[f-name m-name l-name] guys-whole-name]
 (str l-name ", " f-name " " m-name))

Positional destructuring
This positional destructuring doesn't work on maps and sets because they're not logically
aligned sequentially. Thankfully, positional destructuring will work with Java's

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=3
http://github.com/dcolthorp/matchure

2024/05/02 03:30 5/14 The Joy Of Clojure

Various Ways - http://jace.link/

java.util.regex.Mather and anything implementing the CharSequence and
java.util.RandomAccess interfaces.

(let [range-vec (vec (range 10)) [a b c & more :as all] range-vec]
 (println "a b c are:" a b c)
 (println "more is:" more)
 (println "all is:" all)
)
; a b c are: 0 1 2
; more is: (3 4 5 6 7 8 9)
; all is: [0 1 2 3 4 5 6 7 8 9]
;=> nil

3.3.3 Destructuring with a map

ASSOCIATIVE DESTRUCTURING

One final technique worth mentioning is associative destructuring. Using a map to define a number of
destructure bindings isn't limited to maps. We can also destructure a vector by providing a mpa
declaring the local name as indices into them, as shown:

snippet.clojure

(let [{first-thing 0, last-thing 3} [1 2 3 4]]
 [first-thing last-thing])
;=> [1 4]

3.4 Using the REPL to experiment

Most software development projects include a stage where you're not sure what needs to happen
next. Perhaps you need to use a libray or part of a library you've never touched before. Or perhaps
you know what your input to a particular function will be, and what the output should be, but you
aren't sure how to get form one to other. In more static languages, this can be time-consuming and
frustrating; but by leveraging the power of the Clojure REPL, the interactive command prompt, it can
actually by fun.

3.4.1 Experimenting with seqs

Clojure provides find-doc, which searched not just function names but also their doc strings for the
given term:

snippet.clojure

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=6
http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=7

Last update: 2021/12/10 00:59 open:the-joy-of-clojure http://jace.link/open/the-joy-of-clojure

http://jace.link/ Printed on 2024/05/02 03:30

(find-doc "xor")
; -------------------------; clojure.core/bit-xor
; ([x y])
; Bitwise exclusive or
;=> nil

So th function you need is called bit-xor:

snippet.clojure

(bit-xor 1 2)
;=> 3

snippet.clojure

(defn xors [max-x max-y] (for [x (range max-x) y (range max-y)] [x y
(bit-xor x y)]))
(xors 2 2)
;=> ([0 0 0] [0 1 1] [1 0 1] [1 1 0])

THE CONTRIB FUNCTION SHOW

The clojure-contrib library also has a function show in the clojure.contrib.repl-utils namespace that
allows for more useful printouts of class members than we show using for.

4. On scalars

This chapter covers

Understanding precision
Trying to be rational
When to use keywords
Symbolic resolution
Regular expressions - the second problem

4.1 Understanding precision

4.1.1 Truncation

snippet.clojure

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=8
http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=9
http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=10

2024/05/02 03:30 7/14 The Joy Of Clojure

Various Ways - http://jace.link/

(let [imadeuapi 3.14159265358979323846264338327950288419716939937M]
 (println (class imadeuapi))
 imadeuapi)
; java.math.BigDecimal
;=> 3.14159265358979323846264338327950288419716939937M

(let [butieatedit 3.14159265358979323846264338327950288419716939937]
 (println (class butieatedit))
 butieatedit)
; java.lang.Double
;=> 3.141592653589793

As we show, the local butieatedit is truncated because the default Java double type is insufficient. On
the other hand, imadeuapi uses Clojure's literal notation, a suffix character M, to declare a value as
requiring arbitrary decimal representation.

Overflow

snippet.clojure

(+ Integer/MAX_VALUE Integer/MAX_VALUE)
;=> java.lang.ArithmeticException: integer overflow

(unchecked-add (Integer/MAX_VALUE) (Integer/MAX_VALUE))
;=> -2

4.2 Trying to be rational

4.2.2 How to be rational

snippet.clojure

(def a (rationalize 1.0e50))
(def b (rationalize -1.0e50))
(def c (rationalize 17.0e00))

(+ (+ a b) c)
;=> 17

(+ a (+ b c))
;=> 17

(let [a (rationalize 0.1)
 b (rationalize 0.2)

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=11
http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=12

Last update: 2021/12/10 00:59 open:the-joy-of-clojure http://jace.link/open/the-joy-of-clojure

http://jace.link/ Printed on 2024/05/02 03:30

 c (rationalize 0.3)]
 (=
 (* a (+ b c))
 (+ (* a b) (* a c))))
;=> true

There are a few rules of thumb to remember if you want to maintain perfect accuracy in your
computations:

Never use Java math libraries unless they return results of BigDecimal, and even then be1.
suspicious.
Don't rationalize values that are Java float or double primitives.2.
If you must write your own high-precision calculations, do so with rationals.3.
Only convert to a floating-point representation as a last resort.4.

4.3 When to use keywords

The purpose of Clojure keywords, or symbolic identifiers, can sometimes lead to confusion for first-
time Clojure programmers, because their analogue isn't often found2) in other languages. This section
will attempt to alleviate the confusion and provide some tips for how keywords are typically used.

4.3.1 How are keywords different from symbols?

Keywords always refer to themselves. What this means is that the keyword :magma always has the
value :magma, whereas the symbol ruins may refer to any legal Clojure value or reference.

AS KEYS

Because keywords are self-evaluating and provide fast equality checks, they're almost always used in
the context of map keys. An equally important reason to use keywords as map keys is that they can
be used as functions, taking a map as an argument, to perform value lookups:

snippet.clojure

(def population {:zombies 2700, :humans 9})

(:zombies population)
;=> 2700

(println (/ (:zombies population)
 (:humans population))
 "zombies per capita")
; 300 zombies per capita

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=13

2024/05/02 03:30 9/14 The Joy Of Clojure

Various Ways - http://jace.link/

This leads to much more concise code.

AS ENUMERATIONS

Often, Clojure code will use keywords as enumeration valus, such as :small, :medium, and :large. This
provides a nice visual delineation within the source code.

AS MULTIMETHOD DISPATCH VALUES

Because keywords are used often as enumerations, they're ideal candidates for dispatch values for
multimethods.

AS DIRECTIVES

Another common use for keywords is to provide a directive to a function, multimethod, or macro. A
simple way to illustrate this is to imagine a simple function pour, shown in listing 4.5, that takes two
numbers and returns a lazy sequence of the range of those numbers. But there;s also a mode for this
function that takes a keyword :toujours, which will instead return an infinite lazy range starting with
the first number and continuing “forever.”

Listing 4.5 Using a keyword as a function directive

snippet.clojure

(defn pour [lb ub]
 (cond
 (= ub :toujours) (iterate inc lb)
 :else (range lb ub)))

(pour 1 10)
;=> (1 2 3 4 5 6 7 8 9)

(pour 1 :toujours)
; ... runs forever

An illustrative bonus with pour is that the macro cond itself used a directive :else to mark the default
conditional case. In this case, cond uses the fact that the keyword :else is truthy; any keyword (or
truthy vlaue) would've worked just as well.

4.3.2 Qualifying your keywords

Keywords don't belong to any specific namespace, although they may appear to if namespace
qualification is used:

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=14

Last update: 2021/12/10 00:59 open:the-joy-of-clojure http://jace.link/open/the-joy-of-clojure

http://jace.link/ Printed on 2024/05/02 03:30

snippet.clojure

::not-in-ns
;=>:user/not-in-ns

Separating the plumbing from the domain
Within a namespace named crypto, the keywords ::rsa and ::blowfish make sense as
being namespace-qualified. Likewise, should we create a namespace aquarium, then using
::blowfish within is contextually meaningful. Likewise, when adding metadata to structures,
you should consider using qualified keywords as keys and directives if their intention is
domain-oriented. Observe the following code:

snippet.clojure

(defn do-blowfish [directive]
 (case directive
 :aquarium/blowfish (println "feed the fish")
 :crypto/blowfish (println "encode the message")
 :blowfish (println "not sure what to do")))

(ns crypto)
(user/do-blowfish:blowfish)
; not sure what to do

(user/do-blowfish::blowfish)
; encode the message

(ns aquarium)
(user/do-blowfish:blowfish)
; not sure what to do

(user/do-blowfish::blowfish)
; feed the fish

When switching to different namespaces using ns, you can use the namespace-qualified
keyword syntax to ensure that the correct domain-specific code path is executed.

4.4 Symbolic resolution

Symbols in Clojure are roughly analogous to identifiers in many other languages–words that refer to
other things. In a nutshell, symbols are primarily used to provide a name for a given value. But in
Clojure, symbols can also be referred to directly, by using the symbol or quote function or the ' special
operator.

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=15
http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=16

2024/05/02 03:30 11/14 The Joy Of Clojure

Various Ways - http://jace.link/

snippet.clojure

(identical? 'goat 'goat)
;=>false

(= 'goat 'goat)
;=>true

(name 'goat)
"goat"

(let [x 'goat y x] (identical? x y))
;=> true

4.4.1 Metadata

Clojure allows the attachment of metadata to various objects, but for now we'll focus on attaching
metadata to symbols. The with-meta function takes an object and a map and returns another object
of the same type with the metadata attached. The reason why equally named symbols are often not
the same instance is because each can have its own unique metadata:

snippet.clojure

(let [x (with-meta 'goat {:ornery true})
 y (with-meta 'goat {:ornery false})]
 [(= x y)
 (identical? x y)
 (meta x)
 (meta y)])
;=> [true false {:ornery true} {:ornery false}]

4.4.2 Symbols and namespaces

Like keywords, symbols don't belong to any specific namespace. Take, for example, the following
code:

snippet.clojure

(ns where-is)
(def a-symbol 'where-am-i)

a-symbol
;=> where-am-i

(resolve 'a-symbol)
;=> #'where-is/a-symbol

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=17
http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=18
http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=19

Last update: 2021/12/10 00:59 open:the-joy-of-clojure http://jace.link/open/the-joy-of-clojure

http://jace.link/ Printed on 2024/05/02 03:30

`a-symbol
;=> where-is/a-symbol

5. Composite data types

This chapter covers

Persistence, sequences, and complexity
Vectors: creating and using them in all their varieties
Lists: Clojure's code from data structure
How to use persistent queues
Persistent sets
Thinking in maps
Putting it all together: finding the position of items in a sequence

5.1 Persistence, sequences, and complexity

Clojure's composite data types have some unique properties compared to composites in many
mainstream languages. Terms such as persistent and sequence come up, and not always in a way
that makes their meaning clear.

5.2 Vectors: creating and using them in all their varieties

5.2.1 Building vectors

snippet.clojure

(let [my-vector [:a :b :c]]
(into my-vector (range 10)))
;=> [:a :b :c 0 1 2 3 4 5 6 7 8 9]

5.3 Lists: Clojure's code form data structure

5.4 How to use persistent queues

http://jace.link/_export/code/open/the-joy-of-clojure?codeblock=20

2024/05/02 03:30 13/14 The Joy Of Clojure

Various Ways - http://jace.link/

6. Being lazy and set in your ways

This chapter covers

Immutability
Designing a persistent toy
Laziness
Putting it all together: a lazy quicksort

6.1 On immutability

7. Functional programming

This chapter covers

Functions in all their forms
Closures
Thinking recursively
Putting it all together: A* pathfinding

Prefer higher-order functions when processing sequences
We mentioned in section 6.3 that one way to ensure that lazy sequences are never fully realized in
memory is to prefer (Hutton 1999) higher-order functions for processing. Most collection processing
can be performed with some combination of the following functions: map, reduce, filter, for, some,
repeatedly, sort-by, keep take-while, and drop-while But higher-order functions aren’t a panacea for
every solution. Therefore, we’ll cover the topic of recursive solutions deeper in section 7.3 for those
cases when higherorder functions fail or are less than clear.

관련 문서

Clojure
1)

As a deviation from the definitionn coined by Stephen Colbert in his television show The Colbert
Report. Ours isn't about matters of gut feeling but rather about matters of Clojure's logical truth ideal
2)

Ruby has a symbole type that acts, looks, and is used similarly to Clojure keywords

From:
http://jace.link/ - Various Ways

Permanent link:
http://jace.link/open/the-joy-of-clojure

Last update: 2021/12/10 00:59

http://jace.link/open/clojure
http://jace.link/
http://jace.link/open/the-joy-of-clojure

Last update: 2021/12/10 00:59 open:the-joy-of-clojure http://jace.link/open/the-joy-of-clojure

http://jace.link/ Printed on 2024/05/02 03:30

	The Joy Of Clojure
	인용
	keyword
	유용한 웹 사이트 모록

	Docs

	1. Clojure philosophy
	2. Drinking from the Clojure firehose
	2.4 Vars
	2.5 Locals, loops, and blocks
	2.5.3 Loops
	RECUR
	LOOP

	2.9 Namespaces

	3. Dipping our toes in the pool
	3.1 Truthiness
	3.1.2 Don't create Boolean objects
	3.1.3 nil versus false

	3.2 Nil pun with care
	3.3 Destructuring
	3.3.2 Destructuring with a vector
	3.3.3 Destructuring with a map
	ASSOCIATIVE DESTRUCTURING

	3.4 Using the REPL to experiment
	3.4.1 Experimenting with seqs
	THE CONTRIB FUNCTION SHOW

	4. On scalars
	4.1 Understanding precision
	4.1.1 Truncation
	Overflow

	4.2 Trying to be rational
	4.2.2 How to be rational

	4.3 When to use keywords
	4.3.1 How are keywords different from symbols?
	AS KEYS
	AS ENUMERATIONS
	AS MULTIMETHOD DISPATCH VALUES
	AS DIRECTIVES
	Listing 4.5 Using a keyword as a function directive

	4.3.2 Qualifying your keywords

	4.4 Symbolic resolution
	4.4.1 Metadata
	4.4.2 Symbols and namespaces

	5. Composite data types
	5.1 Persistence, sequences, and complexity
	5.2 Vectors: creating and using them in all their varieties
	5.2.1 Building vectors

	5.3 Lists: Clojure's code form data structure
	5.4 How to use persistent queues

	6. Being lazy and set in your ways
	6.1 On immutability

	7. Functional programming
	관련 문서

