2023/09/14 07:08 1/5 A History of Clojure

A History of Clojure

e https://download.clojure.org/papers/clojure-hopl-iv-final.pdf

Introduction

ClojureD 000 UO0OD0O U0 OO 0ODDOO0O OO0 O UOODOD.OD javadOO C#00 OO OOO
gobobobo, bbb o0 o b b b bbb oo bobobbo oo
000000 00000 O000D0.00 00 0D000 000 o000 ooog 200500 Clojure
uob obbodoo.oob b oL, Db U0 DU bbb Db oobobo bo
0000 0000 00000 000D O0O0O000 0000 O00O0oDoO0.000 Lsp0O OoOO
U0 b b oo bbb bbb bodb.Oo 20 b bbb boo bo oobo
0000 ClojureD 00 ODO0OO0 O D0 0OODOOD O OO0ODOO.O 100000 O0O0ODOO@O
O0b0o0oooobboo)y2-50000db0b0b0b0o0oo0b0ob0o0Ooob0oobDOoboD obo
00000 Clojured 000 000 OD0OO0 0O OO0O0OOO.0O0 20070 000 OO0OO OOOO
O Clojured O 00 000 0OO00O OO00OO0OOD.0 00 OO 100% 00 000 OOOOO 2010
0120000 00 9% 00 00D0O0OO0.Clojure0O OO OOODODO ODO,00 00000
000000 O0000D0.00 000000 “0O0o0 00 0ooo0 Oooo(BDFL)D ODOODO OO
000000000000 OCO0DooOod.Clojurel OO0 OOO0 OO0 ODOOOD OO DO ODO
0,00000000000000000.Y

BACKGROUND AND MOTIVATION

Tuesday Afternoon

b 1987000 OO0 OOobobOo boo oo bbooo.oo bbb Oobboo0o 0o boOoo
OO00.0000C++0,0 0000 Javal C#00,0000 ODDOODO,00D0 00O OO 30
b0 oo oo oL ggobo.0b bbb bbo, b obb,0b0D oo, boo Lo, LoD
googbdbdoodoo oo bdogbb.Obobobo bbb bbb b oobbo bo
0000000 O00boOo0o000ob0o o000 0bob0.00b0o OO0 Ub Dbo@Woo oo
oo)o obo,o0o,00,0b0b0oo0,bo0,00 0 00bo0 DbObooDboob0DbboobD boOoo.
gooo oo oodboo,boob,oo, o0, boo, b0, 0,0 o o LboOo o
gobo bbb ob bbb bbb bbo.obbo bbb bbb bboo o bboo booo o
gob0o bob bbb 00 b0 b0 o0 Joobob,0bbo0o bbb oobb oo
U0 oo oo oobogo.bobobog booobb obb bboo boo Lo bobo boo
ugoobo obobo ooodb oobb bbb 0 oo oo oooLob.Ooo oo, bboobo
goobdoo b 0o o0 o oo bbb b bbooo Uob.Ooo b obo
00 odob0 oob bbb bbb o' bbb Dbo0'D UUbDb D Doobbo ob obob O
goobo obdogb oogooboo.bo bbb bbb b oo oobob obbo boboo.
2)

I'm a Believer

199000 O0O0ODO OO C++ 000000 NYUOD OO C++0 O0ODD OD OODD ODODO O
000 0DooobooO@uUuo oooo booooo,0000O0H.0J0 D000 Db Doooo O
O [Hickey 1996]00 O O OO, const-correctshop 00 OO0 O0OO.000 OO0 OO0 OO OO
o0 ooooob 00 oo 0oob0 oo 0o D00 oo oo booobo oo ooo o

Various Ways - http://moro.kr/

https://download.clojure.org/papers/clojure-hopl-iv-final.pdf

Last update: 2022/08/30 08:11 open:a-history-of-clojure http://moro.kr/open/a-history-of-clojure

0o dob o0 ogobbo bbb bbb bbb o boobobobooo.ooa,
U0 oo oogooobo b0 b0 ogo.ooobob bbb b bbb Oobb Oob OO O
o0 o0ob0ob0 b0 oboob bobo DO obooOUOoUo.Obo Dob boo@u oo O

Oo0oob0o,000 00000000 obooo0)yY o oo bbb Dbob booO,0b0 0D DOO

000000 000000.0 00 000 C++ 000 00O0DOoOoOO.Clojure0nD OO OO O
0odoobodoooobboobobdbobbo b0 o boobobbo.0oobbo obbo oo oo
g ogogobob obob obboodobb.0o0ob obb bbb obbo bbb Db obob obboo o
O 0000000 O0OO0bO0O O00o0O0 b0 oobooo0o0 boobDOobo.Ob0ODoD DO O ODO D
(000 000 000000 00 000 O)YODUOD ODODOD OO0 ODDODDO ODOODO C#00 OO
000000 D0D00000@OO Micresoft NetOODODOODOOO). 00000 D00 DO ODOO

000 00000000000 000O0O0((C#0 D00 OD0O0DO00 D00 oo oDoo o oo
O0)yo oo bbb bbb b0 b0 bbb DbooUoUo.Oob.obo obo bobo
0000 000 0000 0D 00O DOO00 O0bOo0 O0b00DODOO0O0bOoOODOOoO.0OD oo Cc#
000 00D O0O0O0C#00000000OOO0ODODODOOOODO.OOD OO0 UODODOODO

00000 OFPOODO FPO OO OOOOD OO O O OOoOoO0O.?
Who Do You Love?

OO0 OO0 OO0 Lisp, Prologd Smalltalkd OO0 OO0 OO DOOOODO.200000 OO OO0OO
0O OO0 O OO0 Common Lisp[SteeleJretal. 1990]000 0O OO O OO0 OO0 ODO00O0O ODOOO
oo0.000 oooooo.000g oo ooo oo bobo oooooo.obobo ooo oo
00000000 000000 oo00go.000b0 o0 oo0o ooo ooo oooooo. o
0000000000 D0DLhO000 00O0000D o000 0DbOoO0O0d.0 00O 0o C++/java/C#
O00000 00" 0000 00" 0000 00 0 doogOCommonlispd OO0 OO0 OOO
Oo0ooo0o.0o00 000 00 00000 o000 oog O ooooo.oo0 ogo ogood
O000 00 000 00 00 0000 0000 00 000 ob oooooo.odo Clojure
00000000000 o0 0000, 000 000 0000000 0000 000000
000 000000 oooo.o0 0oo o000 oo ooobo ooobo oooc oobo ooo o
O00 000 00D0O0oO0o.00 Llsph OO0 OO0 000D OO0 *“ 000" 00 D0DO0O0 O0DOOog
O00o00oOo*“00ooo? 00 odo0oof.00b0 ooooo0 oo oooo oo «~ o0 ooo
Oo*ooool?

200500 ISVOD OO C/C++0 0O0ODOO0O OO0 ODOD0O ODODOO JavaOO .Net'DO'DO ODOO O
g oboobb oo oo bbb oo oo b booUu.oo U bbb oo OO
OO0 (@ :RubyonRails)0 ODO0O0O 0000 OO0 0OO0OO J)vMOO CLROOD O0OOO OO OO OO
0000 0000 00 0D0000.00 CommonlispO0 O O 00 O0O0 OOODO.0D00O0O O
Oo0o0 00 DboOoobobodb.oogb oo bbb o oUbo C++0 oD ODOOD OO O,
g bbb oot oo bbb oo gbb oo oo bbb oo oo bbb oo OO
O0@0 000 C++00000000).000 0000 Commonlisp OO0 O0OO0O OO0

00 000000 0000 00D O0obO OO sSQLOD 0oooOo ODoddb oooogo oood
O0O.200500 Clojure ODOODO OO OO JVMO Common Lispd O0O0OO0 OO0 ODOODO OOO
OO0 JVMO Common LispO00O0 OO0 O0OOO0 OO O ODOOOOO.OO0O DotLisp[Hickey 2003],
CLROD OO DOO0O OO ODO0OODO 0000 OO0O0O Lsp, CLO JVMO OOODO OOODOOO jFli[Hickey
2004], 000 APIO OO 0O OO Foil[Hickey and Thorsen 2005]0 000 0.CLOODO O JvM OO IPCO
O00000.00 00000 0000 OODO 0000 0000 oooo Clojure ODOOO O
OO0 000 OO0 ooo Cljuredl OOO0ODOO ODODOOO goooooo.”?

http://moro.kr/ Printed on 2023/09/14 07:08

2023/09/14 07:08 3/5 A History of Clojure

00 oo

e Clojure
1)
The objective for Clojure can be summarized most succinctly as: | wanted a language as acceptable
as Java or C#, but supporting a much simpler programming model, to use for the kinds of information
system development | had been doing professionally. | started working on Clojure in 2005, during a
sabbatical | funded out of retirement savings. The purpose of the sabbatical was to give myself the
opportunity to work on whatever | found interesting, without regard to outcome, commercial viability
or the opinions of others. One might say these are prerequisites for working on Lisps or functional
languages. | budgeted for two years of self-directed work, and Clojure was one of two projects |
pursued. After about a year | decided the other project (a cochlear modeling and machine listening
problem) was more of a research endeavor that might require two to five more years, so | dedicated
myself at that point to getting Clojure to a useful state. | announced and released the first version of
Clojure, as an open source project, in the fall of 2007. | did 100% of the implementation work during
this time, and more than 90% through the 1.2 release in 2010. Subsequent to release Clojure
benefited greatly from the feedback, suggestions and effort of its community. | am accepted by the
community as “benevolent dictator for life” (BDFL) and continue to make all decisions relating to its

evolution. Clojure is full of the great ideas of others, but | alone take responsibility for its faults.
2)

| had been doing commercial software development since 1987, almost always as the development
lead and primary architect, first in C++, then Java and C#, as was common then and, in testament to
institutional inertia, is still now thirty years later. | worked on scheduling systems, broadcast
automation, yield management, audio recognition, exit poll tabulation and election projection et al. |
would broadly characterize my work, and the work most commonly done by professional pro-
grammers, as information systems programming. Most developers are primarily engaged in making
systems that acquire, extract, transform, maintain, analyze, transmit and render information—facts
about the world. Most often, this information documents some human activity, be that of customers,
suppliers, advertisers, travelers, voters, members, students, patients etc and must deal with all the
irregularity thereof. This is in stark contrast to artificial systems, e.g., programming language
compilers, which make up their own rules, in fully enumerated spaces, can eliminate irregularity and
can reject anything which does not conform. Information system programmers have the thankless
task of attempting to superimpose some- what regular models over information and real-world
activity that refuses to comply. For instance, in music scheduling, trying to decide: whether artists
have songs or songs have artists. Or optimizing a scheduler to spread out the plays of songs by each
artist, except on ‘twofer Tuesdays’ when songs by each artist must be played in adjacent pairs. In

information systems programming, twofer Tuesdays are everywhere.
3)

By the mid 1990’s | was a C++ expert, taught advanced C++ as an adjunct at NYU, and was a
proponent and advocate of the benefits of static typing (but neglected the tradeoffs, sorry students!).
| was happily discovering type parameterization tricks [Hickey 1996], running a const-correct shop
etc. However, over time, in my experience, the suitability-to-task of these statically typed class
models for information systems programming was quite low, and the benefits of the type checking
minimal, especially in addressing the number one actual problem faced by programmers: the
overwhelming complexity inherent in imperative, stateful programming. As programs grew large, they
required increasingly Herculean efforts to change while maintaining all of the presumptions around
state and relationships, never mind dealing with race conditions as concurrency was increasingly in
play. And we faced encroaching, and eventually crippling, coupling, and huge codebases, due directly
to specificity (best-practice encapsulation, abstraction, and parameterization notwithstanding). C++
builds of over an hour were common. In the years immediately preceding work on Clojure | worked on

Various Ways - http://moro.kr/

http://moro.kr/open/clojure

Last update: 2022/08/30 08:11 open:a-history-of-clojure http://moro.kr/open/a-history-of-clojure

the system to be used for the national exit poll in the U.S. This system involved automating large
statistical models. Early on we decided that an imperative approach to doing the stats was a misfit,
being not mathematical and also due to the expected concurrency throughout the system. After
exploring F# for the task (and finding it insufficiently expressive), we decided to code the stats in C#
like the rest of the system (this was a Microsoft .Net shop). | designed some custom immutable data
structures whose use would be co-aligned with the figures in the statistical specifications (so
statisticians who did not know C# could look at the code and understand it), and a functional library
for manipulating the structures and doing the calculations. This was a great success, yielding much
simpler code that we did not, and still do not, worry about. However, the resulting C# code was, in the
eyes of both new and experienced C# developers, bizarre and non-idiomatic. Thus functional
programming was a win, but FP in a non-FP language was not something | could see being widely
applied.

4)

| had always been a language geek, playing with Lisp, Prolog and Smalltalk in my spare time. When |
became an independent consultant in 2000, | spent more time with Common Lisp [Steele Jr et al.
1990] and wrote a couple of real systems in it. It was a revelation. Huge layers of unnecessary
complexity simply vanished. | had the flexibility to use exactly as much language as was needed for
the problem. The percentage of code directly related to the domain increased. Development was
much faster, the resulting program was more general and easier to change. It was impossible to avoid
the sinking feeling that | had been “doing it wrong” by using C++/Java/C# my whole career. | needed
another choice more like Common Lisp or | wouldn’t be able to continue as a professional software
developer. While language features matter, the primary hurdle to language adoption by professionals
is acceptability to developers and stakeholders. Thus, Clojure did have to be at minimum practical for
developers | would work with, and companies | might work for, or else | couldn’t use it to make a
living. | took this as an agenda item for its design but not as motivation to seek their input in advance,
because at the time the advice from professional developers about Lisp was “it’s dead” and about
functional programming was “what’s that?”, and about writing a new programming language was

“you’re crazy”.
5)

The year 2005 may have represented the nadir of language diversity in commercial software
development, with ISVs primarily using C/C++ and many businesses considering themselves either
Java or .Net ‘shops’. This was before the ascent of dynamic languages for web development (e.qg.,
Ruby on Rails), and many companies were reluctant to deploy and operate anything that didn’t run on
the JVM or CLR. | did commercial work in Common Lisp twice - a scheduling system and a yield
management system. The first time the program had to be rewritten in C++ in order to be acceptable
for deployment, an arduous task (though | was a seasoned C++ programmer) that took longer than
the initial development, was much more code, and did not run significantly faster. In the second case
again Common Lisp was not acceptable for deployment, so | designed the program to generate SQL
stored procedures for delivery to the client and runtime execution. Prior to embarking on Clojure in
2005, I had made several attempts to create a bridge between the JVM and Common Lisp, in order to
increase the latter’s practicality and acceptability. These were DotLisp [Hickey 2003], an interpreted
Lisp with host interop for the CLR, jFli [Hickey 2004], a library that embedded a JVM in CL, and Foil
[Hickey and Thorsen 2005], a library that exposed a similar API but used IPC between the CL runtime
and the JVM. None of these yielded production- level solutions, but they definitely informed Clojure’s
ultimate host syntax and fed the idea of Clojure being hosted.

http://moro.kr/ Printed on 2023/09/14 07:08

2023/09/14 07:08 5/5 A History of Clojure

From:
http://moro.kr/ - Various Ways

Permanent link:
http://moro.kr/open/a-history-of-clojure

Last update: 2022/08/30 08:11

Various Ways - http://moro.kr/

http://moro.kr/
http://moro.kr/open/a-history-of-clojure

	A History of Clojure
	Introduction
	BACKGROUND AND MOTIVATION
	Tuesday Afternoon
	I'm a Believer
	Who Do You Love?

	관련 문서

