2024/05/21 18:02 1/5 Thinking in Graphs

Thinking in Graphs

e https://graphqgl.org/learn/thinking-in-graphs/

It's Graphs All the Way Down

GraphQLD 0000 0000 0000 0000 oooo o oooo!

goooobobo bbb o0 oo oo bbb b b obUob oobb Oobb Db OO
000 D0OD0O000 000 OO000OD.GraphQLD OOO0O ODOO0 ODOODO OOODO OODO O

o000 obodob0 0oobob.obo b bbb b0 Db b b gbo/Mwooo obo
ogodod.oooooono bbb oo oo obobobobob oo bbb boooob:-0b ooo d
000 00.000D0 GrephQLD OO00O0O0OD ODODDOO0O OO0 ODODO(@O OO DODOOHOO OO

OO0 000 ooooo?

Shared Language

000 000 0000 00 0000 0000 APID 0000 O 000 ooooo.?

GraphQLOOUO OO0 0O0O0O0 OO0 0O00O0 OO0 000 0D00O0O00.00 0000 00000
00000 0O000 00000 0000 000 000000.00 00 00000 000 00
ooooo oool?

eJ000 OO OOODODODODODODOOO.?

0 000 0000 00,00 000,00000,0000000000000.°
0 00000 OOO,0000,00000000.

0000 00000 DODDODD0DDODDODOO.Y

000 000 0000 00 O000b bOoDOo APIDODD0D0OD0 D ODO0D ODOOD DOD OO D
00000 00000000000 0000 0000 00Do000.GraphQLOODOOO OO O
oo oo oot oo bbb oo oo bbb oo oo bbb bbb ooOo Lo o
00 000 000 000 0000 000.00000 000000000 ooog.?

0000000000000 0000000 ooooo

{

accounts {
inbox {
unreadEmailCount
}
}

Various Ways - http://jace.link/


https://graphql.org/learn/thinking-in-graphs/

Last update: 2022/09/02 06:56 open:thinking-in-graphs

http://jace.link/open/thinking-in-graphs

}

00 oob oo 200 oob oo * ooobog oo

{

mainAccount {
drafts(first: 20) {
...previewInfo
}
}
}

fragment previewInfo on Email {
subject
bodyPreviewSentence

}

Business Logic Layer

oo o oo oo bbb bbb oooo bbb oo oo bbb ooo oo o

oo.?

00 0o0obb 0obb0 0bo0 oo ogo?0000 00 b0 b Db OO0 Db oooboo
goob?0:00 bodb oo oo oo.bbuoo oo b0 bbb o0ob oob oobobo o

0000000000 o0o0ooo.?

http://jace.link/

Printed on 2024/05/21 18:02



2024/05/21 18:02 3/5 Thinking in Graphs

REST RPC

Authorization

Business Logic Layer

Persistence Layer

00 0000000 0O000 OO0 OOO(REST, GraphQLO RPC)D OO0 OO0 00,00 OO
000000000 ooooo.™

Working with Legacy Data

000 000000 0000 00000 000 000000 0000 0000 000
D000 GraphQLOOOD OO0OO0OO OO ooooo.®

b0 oobobo oobo obobo obo oo obobo ob bob OO OobOo boob
odoooooboooobo.oob bo oo boboboo bobo oobob Do Oobo

000 D000 0000 000 0000 GraphQLODOOO 000D 00 ooooo.®

“00" 000 000" 0000GRrRphQLOOO0 ODOO000O0.00 00 OO0 ODOOoO0oo
00000000000 000000000000 o0ooog.?”

Various Ways - http://jace.link/



Last update: 2022/09/02 06:56 open:thinking-in-graphs http://jace.link/open/thinking-in-graphs

One Step at a time

ODooDoooooooo™

Continue Reading

e Serving over HTTP

oo ob

Plugin Backlinks: OO OO O00O0O0O.

1)

With GraphQL, you model your business domain as a graph
2)

Graphs are powerful tools for modeling many real-world phenomena because they resemble our
natural mental models and verbal descriptions of the underlying process. With GraphQL, you model
your business domain as a graph by defining a schema; within your schema, you define different
types of nodes and how they connect/relate to one another. On the client, this creates a pattern
similar to Object-Oriented Programming: types that reference other types. On the server, since
GraphQL only defines the interface, you have the freedom to use it with any backend (new or
legacy!).

3)

Naming things is a hard but important part of building intuitive APIs

4)

GraphQLOO OO OO0 OOQOO OO ODOO OO OO0OD OODOOOO.00 0DOOO OOOOO

gogogdog bbbb b gogo bbbb oo ggoooo. oo bbb oo bbb bbb oo
goodog ooo.
5)

A user can have multiple email accounts
6)

Each email account has an address, inbox, drafts, deleted items, and sent items
7)

Each email has a sender, receive date, subject, and body
8)

Users cannot send an email without a recipient address
9)

Naming things is a hard but important part of building intuitive APIs, so take time to carefully think
about what makes sense for your problem domain and users. Your team should develop a shared
understanding and consensus of these business domain rules because you will need to choose
intuitive, durable names for nodes and relationships in the GraphQL schema. Try to imagine some of

the queries you will want to execute:
10)

Fetch the number of unread emails in my inbox for all my accounts

http://jace.link/ Printed on 2024/05/21 18:02


http://jace.link/open/serving-over-http

2024/05/21 18:02 5/5 Thinking in Graphs

11)

Fetch the “preview info” for the first 20 drafts in the main account
12)

Your business logic layer should act as the single source of truth for enforcing business domain rules
13)

Where should you define the actual business logic? Where should you perform validation and
authorization checks? The answer: inside a dedicated business logic layer. Your business logic layer

should act as the single source of truth for enforcing business domain rules.
14)

In the diagram above, all entry points (REST, GraphQL, and RPC) into the system will be processed

with the same validation, authorization, and error handling rules.
15)

Prefer building a GraphQL schema that describes how clients use the data, rather than mirroring the

legacy database schema.
16)

Sometimes, you will find yourself working with legacy data sources that do not perfectly reflect how
clients consume the data. In these cases, prefer building a GraphQL schema that describes how

clients use the data, rather than mirroring the legacy database schema.
17)

Build your GraphQL schema to express “how” rather than “what”. Then you can improve your

implementation details without breaking the interface with older clients.
18)

Get validation and feedback more frequently
19)

Don't try to model your entire business domain in one sitting. Rather, build only the part of the
schema that you need for one scenario at a time. By gradually expanding the schema, you will get
validation and feedback more frequently to steer you toward building the right solution.

From:
http://jace.link/ - Various Ways

Permanent link:
http://jace.link/open/thinking-in-graphs

Last update: 2022/09/02 06:56

Various Ways - http://jace.link/


http://jace.link/
http://jace.link/open/thinking-in-graphs

	Thinking in Graphs
	It's Graphs All the Way Down
	Shared Language
	Business Logic Layer
	Working with Legacy Data

	One Step at a time
	Continue Reading
	관련 문서


