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Thinking in Graphs

e https://graphqgl.org/learn/thinking-in-graphs/

It's Graphs All the Way Down
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Shared Language
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{

accounts {
inbox {
unreadEmailCount
}
}
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}
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{

mainAccount {
drafts(first: 20) {
...previewInfo
}
}
}

fragment previewInfo on Email {
subject
bodyPreviewSentence

}

Business Logic Layer
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REST RPC

Authorization

Business Logic Layer

Persistence Layer
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Working with Legacy Data
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One Step at a time
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Continue Reading

e Serving over HTTP
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1)

With GraphQL, you model your business domain as a graph
2)

Graphs are powerful tools for modeling many real-world phenomena because they resemble our
natural mental models and verbal descriptions of the underlying process. With GraphQL, you model
your business domain as a graph by defining a schema; within your schema, you define different
types of nodes and how they connect/relate to one another. On the client, this creates a pattern
similar to Object-Oriented Programming: types that reference other types. On the server, since
GraphQL only defines the interface, you have the freedom to use it with any backend (new or
legacy!).

3)

Naming things is a hard but important part of building intuitive APIs

4)
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5)

A user can have multiple email accounts
6)

Each email account has an address, inbox, drafts, deleted items, and sent items
7)

Each email has a sender, receive date, subject, and body
8)

Users cannot send an email without a recipient address
9)

Naming things is a hard but important part of building intuitive APIs, so take time to carefully think
about what makes sense for your problem domain and users. Your team should develop a shared
understanding and consensus of these business domain rules because you will need to choose
intuitive, durable names for nodes and relationships in the GraphQL schema. Try to imagine some of

the queries you will want to execute:
10)

Fetch the number of unread emails in my inbox for all my accounts

http://jace.link/ Printed on 2024/05/21 18:02


http://jace.link/open/serving-over-http

2024/05/21 18:02 5/5 Thinking in Graphs

11)

Fetch the “preview info” for the first 20 drafts in the main account
12)

Your business logic layer should act as the single source of truth for enforcing business domain rules
13)

Where should you define the actual business logic? Where should you perform validation and
authorization checks? The answer: inside a dedicated business logic layer. Your business logic layer

should act as the single source of truth for enforcing business domain rules.
14)

In the diagram above, all entry points (REST, GraphQL, and RPC) into the system will be processed

with the same validation, authorization, and error handling rules.
15)

Prefer building a GraphQL schema that describes how clients use the data, rather than mirroring the

legacy database schema.
16)

Sometimes, you will find yourself working with legacy data sources that do not perfectly reflect how
clients consume the data. In these cases, prefer building a GraphQL schema that describes how

clients use the data, rather than mirroring the legacy database schema.
17)

Build your GraphQL schema to express “how” rather than “what”. Then you can improve your

implementation details without breaking the interface with older clients.
18)

Get validation and feedback more frequently
19)

Don't try to model your entire business domain in one sitting. Rather, build only the part of the
schema that you need for one scenario at a time. By gradually expanding the schema, you will get
validation and feedback more frequently to steer you toward building the right solution.
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