2023/11/30 11:10 1/15 Queries and Mutations

Queries and Mutations

e https://graphqgl.org/learn/queries/

0 000000 GraphQLO OO 0000 000 OO0 000 ooo ooool!

Fields

00 0000 GraphQLD 00D OO0 OO0 0D0D0O0 0OODOO0OD.00 000 000 0000 O O
00000 oooooog.?

{ {
hero { "data": {
name "hero": {
} "name": "R2-D2"

000 000 000 00 0000000000000 00000.000 GraphQLO 0000
O0.0000 00 0O00 000000 000 000000 0000 000 00000000
oooo.?

00 nameOd String 000 OODOOD.O OO StarWarsD 00 OO0 "R2-D2"0 oDOooO.”

0D,0000-00000000000.0,00000 0000000000000
0.000 00 000 appearsIn000 0000 0O OO0 OO0OOO.°

g bbb oot goog bbb oo oo obooboobb oo oo bbb oo oooo.
0000000000000 00000 0000OD00O0.GrephQLOOD OO0 OO 0O OO O

00 00000000 000000 O0O0O0RESTOOOODOOOD OO0 OO0 OO0 OO0 OO0
0000000000000 O0000 000 Oooooo.?

{ {
hero { "data": {
name "hero": {
Queries can have comments! "name": "R2-D2",
friends { "friends": [
name {
} "name": "Luke Skywalker"

} b

Various Ways - https://moro.kr/

https://graphql.org/learn/queries/

Last update: 2022/08/31 06:15 open:queries-and-mutations https://moro.kr/open/queries-and-mutations

} {
"name": "Han Solo"
|
{
"name": "Leia Organa"
}
]
}
}
}

0000 friends OO0 OO0 OO0 OOOOO.GrephQLOOD OO0 OO OO0 OO OO OOO
00 0000 0000 0000 000 000 0000 0000 000 oo oooo.”

Arguments

O00D0D00000000000D00000000 0000 GraphQLOD 00 0OD0 0000
0000000000 O0O000.000 0000000000000 0000 000 O000a0
ooooool?

{ {
human(id: "1000") { "data": {
name "human": {
height “name": "Luke Skywalker",
} "height": 1.72
} ¥
}
}

RESTO OO0 O0O0OODOO OO OO0 ODO(@DOO OO0 0000 OUVRLOODOO)Y D ODODO O oOD
0.000 GraphQLO OO U0 OO0 OO0 OOD O0OD OO O0OD OO O 0OOOO GraphQLO
OO0 APIODOO0ODO OO0 OO0 DO OOOD.OO0DO00ODO0ODOO OODOOOD bDbOO OObOOo
0000000000000 00000 000000000 oooooo?

{ {
human(id: "1000") { "data": {
name "human": {
height(unit: FOOT) "name": "Luke Skywalker",
} "height": 5.6430448
} ¥
}
}

000000 ooo0bo0oobo0.obobodb D00 D0 Ob@ oo Oob Ooo,METEROO

https://moro.kr/ Printed on 2023/11/30 11:10

2023/11/30 11:10 3/15 Queries and Mutations

FOOT) O OO0 0000 OD0O0DOD 0OD0OO0O0O0O.GraphQLD OO0 OO0 OO0 OO ODODOO
GraphQLO OO 00 0000 0000 0 00000000 OO0 000000000000

e Schemas and Types

Aliases

oo oo oo oot oo bbb bbb oo bbb bbb oo bbb oo
Ugobootb oo bbb oo g bbb o oo bbb oo Dooo.bbb oboo g

00 00000.000 0000 00 000 000 000000000 oooog.lt

{ {
empireHero: hero(episode: EMPIRE) "data": {
{ "empireHero": {
name "name": "Luke Skywalker"
} },
jediHero: hero(episode: JEDI) { "jediHero": {
name “name": "R2-D2"
} }
} }
}

00 000 0O hero000 O0O000 00 0000 OO0 OO0 O OOOOOOOOOOO
00000000 O0oooo.?

Fragments

g obobobb 000 oooo bbb 0o oo bbb oo oo bbb oo bbb oo oo
goo.0odo obb oo oo O oo oo b dodo.0ooo b oo oo oboo
g O

00 0000 Ooo ooooo.®

OO0 GraphQLD 00000 000 000 OO0 00D D0DDDDD.000 0000 00 000
000 000000000000 O000D0.000 000000 0000 00 000 000 0
OO0 ooooooo.

{ {
leftComparison: hero(episode: "data": {
EMPIRE) { "leftComparison": {
...comparisonFields "name": "Luke Skywalker",
} "appearsIn": [
rightComparison: hero(episode: "NEWHOPE",
JEDI) { "EMPIRE",
...comparisonFields “JEDI"
} 1,

Various Ways - https://moro.kr/

https://moro.kr/open/schemas-and-types

Last update: 2022/08/31 06:15 open:queries-and-mutations https://moro.kr/open/queries-and-mutations

} "friends": [
{
fragment comparisonFields on “name": "Han Solo"
Character { },
name {
appearsIn "name": "Leia Organa"
friends { },
name {
} “name": "C-3P0"
} },
{

"name": "R2-D2"

},
"rightComparison": {
"name": "R2-D2",

"appearsIn": [
"NEWHOPE",
"EMPIRE",

“"JEDI"

1,

"friends": [

{
“name": "Luke Skywalker"
},
{
"name": "Han Solo"
H
{
“name": "Leia Organa"
}

oo bbb oo oo bbb oo b .o bbb bbb ooOoa
o0 o000 oooboobbooboobob oo bboUoobOob.OOobovVbODoD OoboOo oo

00 000000 0000 000 00 000 00000 0000 0 o0oooooo.®
Using variables inside fragments

000 0000000 000 000 0000 00000, VariablesD Dooooo. ™

query HeroComparison($first: Int = {
3) { "data": {

https://moro.kr/ Printed on 2023/11/30 11:10

2023/11/30 11:10 5/15 Queries and Mutations
leftComparison: hero(episode: "leftComparison": {
EMPIRE) { "name": "Luke Skywalker",
...comparisonFields "friendsConnection": {
} "totalCount": 4,
rightComparison: hero(episode: "edges": [
JEDI) { {
...comparisonFields “node": {
} "name": "Han Solo"
} }
b
fragment comparisonFields on {
Character { "node": {
name “name": "Leia Organa"
friendsConnection(first: $first) }
{ b
totalCount {
edges { "node": {
node { "name": "C-3P0O"
name }
} }
}]
} }
} b
"rightComparison": {
"name": "R2-D2",
"friendsConnection": {
"totalCount": 3,
"edges": [
{
"node": {
"name": "Luke
Skywalker"
}
b
{
"node": {
"name": "Han Solo"
}
b
{
"node": {
“name": "Leia Organa"
}
}
]
}
}

Various Ways - https://moro.kr/

Last update: 2022/08/31 06:15 open:queries-and-mutations https://moro.kr/open/queries-and-mutations

Operation Name

0000 00000000 000000000000 000 00000 0000 0000 o0
000000000 0OoOoooooooooo.t?

000 00 0000 OO0 queryd 0000 OO ODOOO HeroNameAndFriendsdO ODOOO O
ooo.®

query HeroNameAndFriends { {
hero { "data": {
name "hero": {
friends { "name": "R2-D2",
name "friends": [
} {
} "name": "Luke Skywalker"
} b
{
"name": "Han Solo"
b
{
"name": "Leia Organa"
}
]
}
}
¥

b0 ogob oo,00 b0 bbog oL ob oob obboo.bb bbb obob oboba
00000000 00000.000 00000000000 000000 o0ooog.?

U0 odb oot ob oo oo b0 oooobobo.0ob oo oobbbo bbboo0o Oooo o
0000000000000 000 0O0000.000 0000@OO0 OO0 oo GraphQLO
O0O00O0b0Ooob0)ooo oo o0 oboo oboooo oobD ooob oo O oo
O0.000 0000 00000 00000 O0ODObO0DoO0O0O0D.dOo 0O JavaScriptd OO O
b gobb oo bbb 0000 oo b oobb obo bbb boo boobob oo
0000000 00000.00000 GraphQLOO O OO0 OO0 ODOODOO OOO OO OO

000 000 GraphQLO OO OOD0O0O 0D OO0 OO0 OO0 O Ooooo®

Variables

gobo b obb ob oo
gob obbooo.obo oo d
U ogobobo ob oooon.

21)

ugbob ob oob ob oobb 0ob oobo bbb OO obbh oboboOo.0bo bbooo g o
00 0000 OO 0000 0DO0O ODO0Od GrephQLODO OODOCO ODDOOOCOO OO ODOOO.

00 GraphQLOD O 0000 OO0 OO0 OO0O0ODOO O0OD0 O0O0DODO ODOO OO OO0 OOODOO.

https://moro.kr/ Printed on 2023/11/30 11:10

2023/11/30 11:10 7/15 Queries and Mutations

000 00 O0oooooo.®
00 0000000000000 oooo ooo.?

1. 000 OO0 00 $variableNameO O ODOOO.
2. 0000 0000 00 0O 000 $variableNamed 00O OO.
3. variableName: value OO0 OOO(@QOOODOJSON)ODO ODoOo O oog

VARIABLES
query HeroNameAndFriends ($episode: {
Episode) { "data": {
HepasedesodéIEBEPisode) { "hero": {
} name "name": "R2-D2",
friends { "friends": [
name {
} “name": "Luke Skywalker"
} b
} {
"name": "Han Solo"
b,
{
“name": "Leia Organa"
}

00 O0000 0000 000 0000000000000 00000000000 OO0
O00.000 0000000000 00000000000 000000 0000 OO0 0000
0.0000 000000000 000000000 000 00000 oooo.®

Variable definitions

00 000 0O 0000 ($episode: Episode)00 OO0 O0000.000 OO0 OO0 OO
000000000 00000.0000 $0 000000 000000000,000 0000
(0 0000 Episode)d oooog.”

00000 000 00
0000 O0ooO oo
oo ooooo.?”

o,o0o00 oo oo 0
b o0 oo ogd
o0 0ob0ob0 oo obobob0 bbb bob O OobOobo.0b0 bobOo 'DODObob bo oo obo
000 O00000.000 0000000 000nullD 00 OO0 000 O00O0 OO0 00

ooo.®

00000 000 00000 000 00000 GraphQLOOO OO0 OO0 OO0 0OO00DO.O
00 000 000 0000 000 0ooo oooo.®

Various Ways - https://moro.kr/

Last update: 2022/08/31 06:15 open:queries-and-mutations https://moro.kr/open/queries-and-mutations

Default variables

00 000000000000 000 000 0000 ooo oo ooog.™

guery HeroNameAndFriends ($episode: Episode = JEDI) {
hero(episode: $episode) {
name
friends {
name
}
}
}

00000 0000000000 000 0000 00000000 0 0000.00 000 0
00 000 0000 oooo ooooo?Y

Directives

000 000000000 00000000000 0000000000 00000 000

00 000000.000 0000000000 0000000000000 000 0000

000 000000 0000 0000 0000000 0000.0000000000000
OUO0O0O0O0 0O00 0 0000.00000000000000 000 ooooo®

query Hero($episode: Episode, {
$withFriends: Boolean!) { "data": {
hero(episode: $episode) { "hero": {
name "name": "R2-D2"
friends @include(if: }
$withFriends) { }
name }
}
}
}
VARIABLES
{

"episode": "JEDI",
"withFriends": false

00000 0000 00 withFriendsO OO0 truel 0000 000 000 00000 OO0
0.

000000 00 GraphQLD OO0 OO0 O0ODOO ODOO.0000 OO0 00O OO0 OO0 OO

https://moro.kr/ Printed on 2023/11/30 11:10

2023/11/30 11:10 9/15 Queries and Mutations

00000000000 D0D0O00000O0ODDO0ODODDO0DO0ODODO.0O0D GrephQLOODDO OO
00000 GraphQLO O OO0OO0 0000 00 000 0O 00 0000 oooog.?

e @include(if: Boolean) 00D trued O0ODD 0OD0 O OODO ODODO.®
e @skip(if: Boolean) OO0 truedD O OOD ODODOOO®

0000 000
000 0000
02"

O

0 ogd od
u.0ooog o

Mutations

GraphQLO 00 0O0O0O0O 00D OO0 00000 00D OO0 000 000 000 0000 00
00000000000 Ooo0o0ooooon.®

RESTOO 00 000 00 000 00 0D0O00 000 0000 00000 GETOOOD ODO0OO
D000 0000 00 00 0000.GraphQLD OO0O00.00000 00 OO0 0000 OO
00000000 0000.000 0000000 00 000 mutationD OO0 0O00ODO0O OO
00000000000 ooooooo.®?

000 00000 0000000 000 0000 00000000 O0O0000.000 000
0000000000000 0O0O000O0000.000 mutatonOO DOoooooo.*

mutation {
CreateReviewForEpisode($ep: "data": {
Episode!, $review: ReviewInput!) { "createReview": {
createReview(episode: $ep, "stars": 5,
review: $review) { "commentary": "This is a
stars great movie!"
commentary }
} }
} }
VARIABLES
{
"ep": "JEDI",
"review": {
"stars": 5,
"commentary": "This is a great
movie!"
}
}

createReview OO OO OO0 OOO starsO commentary 000 O0O0O0O OO0 OOO0O
O0.000000DO00D000O0ODO0DDOODODOODO0OODODODDOOOODO,00 0000000
0000000000000 oooooog.®

Various Ways - https://moro.kr/

Last update: 2022/08/31 06:15 open:queries-and-mutations https://moro.kr/open/queries-and-mutations

00 0000000 reviewdDODOD O0O0DO0 OO0 OO OO0OO0.0O00 OO0 OO0 OOOO O
00000 00000000000 O0DO000.000 00000 000000000000
ooo.*®?

Multiple fields in mutations
mutationD OO0 D0O0O0O0 OO0 OO0 OO0 0O O0O000.000 mutatonOOO0O OO OO
000000 O0ooooooo.®

00 000 000 00000 00 mutationO0O0 000 OO0 oooooO.*

0,0 0000 O OO0 mutationD 00O incrementCredits O OO mutationD O OO OO O
000000 0000000000 000000 000 o000 ooo.®

Inline Fragments

0000000000 00000 GraphQLODODDODOD O0ODDD 0O 00D OO0 0000 OO0
00000 0000.000 000000000 O0O0000.*

gogooo bbb bbb oo b bbb oo oo bbb oo b bbbb oo o o
00 0000 00000 000.00 0000000000 ooog.?”

query HeroForEpisode($ep: Episode!) {

{ "data": {
hero(episode: $ep) { "hero": {
name "name": "R2-D2",
on Droid { "primaryFunction":
primaryFunction "Astromech"
} }
on Human { }
height }
}
}
}
VARIABLES
{
"ep": "JEDI"
}

00000 heroOOO OOOQO OUOO OO Human OO Droidd O O OO Character0QOQd
O0000.00 00000 named OO CharacterOO0OO0O0D0O OD0O0O0O OO0 OO0 O OO0
0.*®

O000 D00 00 D00 00000 00 000 0O InlineFragments O0OO0 OOO.0O O
O 000 Droidd DO ...0 ODOO0 ODOODO OO OO0 primaryFunction OO0 HeroOO O

https://moro.kr/ Printed on 2023/11/30 11:10

https://moro.kr/open/inline-fragments

2023/11/30 11:10 11/15 Queries and Mutations

0O Characterd Droid 000 0000 OOO0OO.HumanOOO height 000 ooooo.*
g0 bbb 0o oo bbb 000 0o U0 OO oooUo Doo o
oooo.

Meta fields

GraphQLOOOOO OO0 OO0 O0OO0 OO0 OODUO ODODO OO ODODOD O OOODOOO OO
0000 0000 000 000 000 0o0o0OgO.GraphQLD OO OO typenamed COOOO
000 000000000000 0000000000 oooog?

{ {
search(text: "an") { "data": {
___typename "search": [
on Human { {
name " typename": "Human",
} "name": "Han Solo"
on Droid { },
name {
} " typename": "Human",
on Starship { "name": "Leia Organa"
name },
} {
} " typename": "Starship",
} "name": "TIE Advanced x1"
}
]
}
}

0 search0 0000000 OO0 OODODOOODODOOODOOODOODOOO. typename O
0 0000000000 000 0000 00 ooooog.®

GraphQLOUODOO 0O OO0 OO0 OO0 ODOO0OO0O 0000 Introspection 0000 0000 O 00O
oo

Continue Reading

e Schemas and Types

oo oo

e Schemas and Types

Various Ways - https://moro.kr/

https://moro.kr/open/introspection
https://moro.kr/open/schemas-and-types
https://moro.kr/open/schemas-and-types

Last update: 2022/08/31 06:15 open:queries-and-mutations https://moro.kr/open/queries-and-mutations

1)

On this page, you'll learn in detail about how to query a GraphQL server.
2)

At its simplest, GraphQL is about asking for specific fields on objects. Let's start by looking at a very

simple query and the result we get when we run it:
3)

You can see immediately that the query has exactly the same shape as the result. This is essential to
GraphQL, because you always get back what you expect, and the server knows exactly what fields

the client is asking for.
a)

The field name returns a String type, in this case the name of the main hero of Star Wars, “R2-D2".
5)

Oh, one more thing - the query above is interactive. That means you can change it as you like and see

the new result. Try adding an appearsin field to the hero object in the query, and see the new result.
6)

In the previous example, we just asked for the name of our hero which returned a String, but fields
can also refer to Objects. In that case, you can make a sub-selection of fields for that object. GraphQL
gueries can traverse related objects and their fields, letting clients fetch lots of related data in one

request, instead of making several roundtrips as one would need in a classic REST architecture.
7)

Note that in this example, the friends field returns an array of items. GraphQL queries look the same
for both single items or lists of items, however we know which one to expect based on what is

indicated in the schema.
8)

If the only thing we could do was traverse objects and their fields, GraphQL would already be a very
useful language for data fetching. But when you add the ability to pass arguments to fields, things get

much more interesting.
9)

In a system like REST, you can only pass a single set of arguments - the query parameters and URL
segments in your request. But in GraphQL, every field and nested object can get its own set of

arguments, making GraphQL a complete replacement for making multiple API fetches. You can even
pass arguments into scalar fields, to implement data transformations once on the server, instead of

on every client separately.
10)

Arguments can be of many different types. In the above example, we have used an Enumeration type,
which represents one of a finite set of options (in this case, units of length, either METER or FOOT).
GraphQL comes with a default set of types, but a GraphQL server can also declare its own custom

types, as long as they can be serialized into your transport format.
11)

If you have a sharp eye, you may have noticed that, since the result object fields match the name of
the field in the query but don't include arguments, you can't directly query for the same field with
different arguments. That's why you need aliases - they let you rename the result of a field to

anything you want.
12)

In the above example, the two hero fields would have conflicted, but since we can alias them to

different names, we can get both results in one request.
13)

Let's say we had a relatively complicated page in our app, which lets us look at two heroes side by
side, along with their friends. You can imagine that such a query could quickly get complicated,

because we would need to repeat the fields at least once - one for each side of the comparison.
14)

That's why GraphQL includes reusable units called fragments. Fragments let you construct sets of
fields, and then include them in queries where you need to. Here's an example of how you could solve
the above situation using fragments:

https://moro.kr/ Printed on 2023/11/30 11:10

2023/11/30 11:10 13/15 Queries and Mutations

15)

You can see how the above query would be pretty repetitive if the fields were repeated. The concept
of fragments is frequently used to split complicated application data requirements into smaller
chunks, especially when you need to combine lots of Ul components with different fragments into one

initial data fetch.
16)

It is possible for fragments to access variables declared in the query or mutation. See variables.
17)

Up until now, we have been using a shorthand syntax where we omit both the query keyword and the

query name, but in production apps it's useful to use these to make our code less ambiguous.
18)

Here’s an example that includes the keyword query as operation type and HeroNameAndFriends as

operation name :
19)

The operation type is either query, mutation, or subscription and describes what type of operation
you're intending to do. The operation type is required unless you're using the query shorthand syntax,

in which case you can't supply a name or variable definitions for your operation.
20)

The operation name is a meaningful and explicit name for your operation. It is only required in multi-
operation documents, but its use is encouraged because it is very helpful for debugging and server-
side logging. When something goes wrong (you see errors either in your network logs, or in the logs of
your GraphQL server) it is easier to identify a query in your codebase by name instead of trying to
decipher the contents. Think of this just like a function name in your favorite programming language.
For example, in JavaScript we can easily work only with anonymous functions, but when we give a
function a name, it's easier to track it down, debug our code, and log when it's called. In the same
way, GraphQL query and mutation names, along with fragment names, can be a useful debugging

tool on the server side to identify different GraphQL requests.
21)

So far, we have been writing all of our arguments inside the query string. But in most applications, the
arguments to fields will be dynamic: For example, there might be a dropdown that lets you select

which Star Wars episode you are interested in, or a search field, or a set of filters.
22)

It wouldn't be a good idea to pass these dynamic arguments directly in the query string, because then
our client-side code would need to dynamically manipulate the query string at runtime, and serialize it
into a GraphQL-specific format. Instead, GraphQL has a first-class way to factor dynamic values out of

the query, and pass them as a separate dictionary. These values are called variables.
23)

When we start working with variables, we need to do three things:
24)

1. Replace the static value in the query with $variableName 2. Declare $variableName as one of
the variables accepted by the query 3. Pass variableName: value in the separate, transport-

specific (usually JSON) variables dictionary
25)

Now, in our client code, we can simply pass a different variable rather than needing to construct an
entirely new query. This is also in general a good practice for denoting which arguments in our query
are expected to be dynamic - we should never be doing string interpolation to construct queries from

user-supplied values.
26)

The variable definitions are the part that looks like ($episode: Episode) inthe query above. It
works just like the argument definitions for a function in a typed language. It lists all of the variables,
prefixed by $, followed by their type, in this case Episode.

27)

All declared variables must be either scalars, enums, or input object types. So if you want to pass a
complex object into a field, you need to know what input type that matches on the server. Learn more

Various Ways - https://moro.kr/

Last update: 2022/08/31 06:15 open:queries-and-mutations https://moro.kr/open/queries-and-mutations

about input object types on the Schema page.
28)

Variable definitions can be optional or required. In the case above, since there isn't an ! next to the
Episode type, it's optional. But if the field you are passing the variable into requires a non-null

argument, then the variable has to be required as well.
29)

To learn more about the syntax for these variable definitions, it's useful to learn the GraphQL schema

language. The schema language is explained in detail on the Schema page.
30)

Default values can also be assigned to the variables in the query by adding the default value after the

type declaration.
31)

When default values are provided for all variables, you can call the query without passing any
variables. If any variables are passed as part of the variables dictionary, they will override the

defaults.
32)

We discussed above how variables enable us to avoid doing manual string interpolation to construct
dynamic queries. Passing variables in arguments solves a pretty big class of these problems, but we
might also need a way to dynamically change the structure and shape of our queries using variables.
For example, we can imagine a Ul component that has a summarized and detailed view, where one

includes more fields than the other.
33)

Try editing the variables above to instead pass true for withFriends, and see how the result changes.
34)

We needed to use a new feature in GraphQL called a directive. A directive can be attached to a field
or fragment inclusion, and can affect execution of the query in any way the server desires. The core
GraphQL specification includes exactly two directives, which must be supported by any spec-

compliant GraphQL server implementation:
35)

@include(if: Boolean) Only include this field in the result if the argument is true.
36)

@skip(if: Boolean) Skip this field if the argument is true.

37)
Directives can be useful to get out of situations where you otherwise would need to do string
manipulation to add and remove fields in your query. Server implementations may also add

experimental features by defining completely new directives.
38)

Most discussions of GraphQL focus on data fetching, but any complete data platform needs a way to

modify server-side data as well.
39)

In REST, any request might end up causing some side-effects on the server, but by convention it's
suggested that one doesn't use GET requests to modify data. GraphQL is similar - technically any
query could be implemented to cause a data write. However, it's useful to establish a convention that

any operations that cause writes should be sent explicitly via a mutation.
40)

Just like in queries, if the mutation field returns an object type, you can ask for nested fields. This can
be useful for fetching the new state of an object after an update. Let's look at a simple example

mutation:
41)

Note how createReview field returns the stars and commentary fields of the newly created review.
This is especially useful when mutating existing data, for example, when incrementing a field, since

we can mutate and query the new value of the field with one request.
42)

You might also notice that, in this example, the review variable we passed in is not a scalar. It's an

https://moro.kr/ Printed on 2023/11/30 11:10

2023/11/30 11:10 15/15 Queries and Mutations

input object type, a special kind of object type that can be passed in as an argument. Learn more

about input types on the Schema page.
43)

A mutation can contain multiple fields, just like a query. There's one important distinction between

queries and mutations, other than the name:
44)

While query fields are executed in parallel, mutation fields run in series, one after the other.
45)

This means that if we send two incrementCredits mutations in one request, the first is guaranteed

to finish before the second begins, ensuring that we don't end up with a race condition with ourselves.
46)

Like many other type systems, GraphQL schemas include the ability to define interfaces and union

types. Learn about them in the schema guide.
47)

If you are querying a field that returns an interface or a union type, you will need to use inline

fragments to access data on the underlying concrete type. It's easiest to see with an example:
48)

In this query, the hero field returns the type Character, which might be either a Human or a Droid
depending on the episode argument. In the direct selection, you can only ask for fields that exist on

the Character interface, such as name.
49)

To ask for a field on the concrete type, you need to use an inline fragment with a type condition.
Because the first fragment is labeled as ... on Droid, the primaryFunction field will only be executed if
the Character returned from hero is of the Droid type. Similarly for the height field for the Human

type.

50)

Named fragments can also be used in the same way, since a named fragment always has a type
attached.

51)

Given that there are some situations where you don't know what type you'll get back from the
GraphQL service, you need some way to determine how to handle that data on the client. GraphQL
allows you to request typename, a meta field, at any point in a query to get the name of the object
type at that point.

52)

In the above query, search returns a union type that can be one of three options. It would be

impossible to tell apart the different types from the client without the _typename field.
53)

GraphQL services provide a few meta fields, the rest of which are used to expose the Introspection
system.

From:
https://moro.kr/ - Various Ways

Permanent link:
https://moro.kr/open/queries-and-mutations

Last update: 2022/08/31 06:15

Various Ways - https://moro.kr/

https://moro.kr/
https://moro.kr/open/queries-and-mutations

	Queries and Mutations
	Fields
	Arguments
	Aliases
	Fragments
	Using variables inside fragments

	Operation Name
	Variables
	Variable definitions
	Default variables

	Directives
	Mutations
	Multiple fields in mutations

	Inline Fragments
	Meta fields

	Continue Reading
	관련 문서

