2023/12/11 17:26 1/7 GraphQL Execution

GraphQL Execution

000 O GraphQLO OO OOOOO JSONOD OO0 O0OD0 O0D0 00000 OO0 0000
GraphQLO OO 0O Ooooool!

GraphQLOD OO OO0 OO0 OO0 OO0DO O UOOOD.0D0 00D O0OOO OO OO OO DOOO
0 0000000.000 00 000 00 0000 000 000 00 0000 ooooogl?

type Query {
human(id: ID!): Human

}

type Human {
name: String
appearsIn: [Episode]
starships: [Starship]

}

enum Episode {
NEWHOPE
EMPIRE
JEDI

}

type Starship {
name: String

}

000 0000000000000 0000 00 000 00 ooooooal?

{ {
human(id: 1002) { "data": {
name "human": {
appearsIn "name": "Han Solo",
starships { "appearsIn": [
name "NEWHOPE",
} "EMPIRE",
} "JEDI"
} 1,
"starships": [
{
"name": "Millenium
Falcon"
},
{
"name": "Imperial

Various Ways - https://moro.kr/

Last update: 2022/09/01 08:28 open:graphgl-execution https://moro.kr/open/graphgl-execution

shuttle"

GraphQLO DD 0 000 OO0 OO0 0000 00 000 00 00 0000 00000000,
00 000 OO0 GraphQLD O0OO0D0 0D0ODODD.0 000 O 000 GraphQLOO 0000 OO
00 00000 0D00 00 00000.000 0000 00 0000 0000 00000000
0.9

uobogbbdoo oo oo b0 b bboo oo boobb.Oobobb bbb ob OO O
gob dob oobb bbb bbb bbb bbb Db bbb obboo.bboo bboo bo bbo

D00 00000.GraphQLO OO OO0 OO0 OO0 ooo0O.”

Root fields & resolvers

00 GraphQLO OO 0OODO OO0OO0ODO GraphQLAPIO OO OO0 OO0 OD0O0OO0 ODO0OOO0 OO0 O
00,00 0000000000 ooooo ooo.l?

000000 000idOD0 D000 humanO0O0 OO0 OD0OO0OO0.0 000 OO0 OODO O
00 0000000 0000 00 HumanOOO 0000 oooog.”

Query
human(obj, args, context, info
context.db.loadHumanByID(args.id).then
userData Human(userData

0 00D JavaScriptD ODO0O0ODODO GraphQLO DD OO0 OO0 OO0 O O0O0OO0.000 OO
0400 00O Ooool?

e0bj: 00 00 00D 0OODOD 0OD OD0 ODOO0O0 OO0 OO OoOooog.?
e args:GraphQLO OO OO0 OOOD oDoooo.
e context: 00 UD0U0 UDDD OO0 0OD0OD0 0OO0D OO0 O0O0OODOOO0O OO0 0DOO0OO O

00000000000 O0oOoo oooo.tY
einfo: 00 D00 00D OOD OO0 O OOOD OO OOODOD OO OOOOODO OO0

GraphQLResolvelnfo 000 ooooog.™
Asynchronous resolvers

0 00000000000 0000 000 000 oooooog.?

https://moro.kr/ Printed on 2023/12/11 17:26

https://graphql.org/code/
https://graphql.org/graphql-js/type/#graphqlobjecttype

2023/12/11 17:26 3/7 GraphQL Execution

human(obj, args, context, info
context.db.loadHumanByID(args.id).then
userData Human (userData

00000 GraphQLOOODO OO0 OO0 d0D O0DOD0OD ODODDOO D000 O ODOD ODODOOO
00 00 0000 0000 0 000O00.0b0000dbo0 00D 00 oOobO OooOooo
Promised 00O 0O OO . JavaScriptD O Promisedl 0000 OO0 0000 O 0OO0OO Future,

Tasks 00 Deferred00 OO OO OO0 D00 OO0 OOOOO.0000000 0000 OO
0O HumanOOO OOOO OO0 O OooooOo.Y

000 000 PromisesD 000 000 GraphQLO OO OO0 ODO00D.000 OO0 human OO
0000 0000000000 00000 00000.0000 00 GraphQLD 0000 OO
Promises, Futures [0 TasksD OO0 OO0 OOO0O OO0 0000 Ooooo0O.®

Trivial resolvers

OO0 HumanOOO 000 O 0000 GraphQLOOO OO0 000 000 0 0D00O.Y

Human
name(obj, args, context, info
obj.name

GraphQLO OO ODOD OOD ODODO ODOO0 O 000D OO0 0000 00 0O0O000. human
000 0D0000 0000 00 GraphQLD OO0 OO0 OO0 O0OODO OO O0O0OO0 OO OO
000 00 000 Human OO0 000 0000 000 00 o0oo0o0o0.Y

0 0000000000000 O00000.00000 0000000 o0bj000 OO 0OODOO
O00 O HumanOOOOO.O OO0 HumanOOOO OO0 OO0 OO0 O OO namedOO OO0
ooo.t®

00,00 GraphQLOOODODODOO ODOOD DOOD DODDOO ODOO D OOD OOD OODODO OODO
0 000000000000 00 0000000 oooog.?

Scalar coercion

name 000 O0OO0O OO appearsInO starships 000 OO0 OO0 O 0OOO.
appearsIn0000 000 0000 OO0 OO0 000 000 0o0ooooo0.®

Human
appearsIn(obj

Various Ways - https://moro.kr/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Last update: 2022/09/01 08:28 open:graphgl-execution https://moro.kr/open/graphgl-execution

obj.appearsIn // returns [4, 5, 6]

g oo oot goooo.go bbb oo oo bboobobb o oo bbb ooooat
000 00000000 EnumO0 0000 00000 O0000.00 000?2?

000 0O00 00000 0000.00 0000 000 0000 000 00 000 000 00
00000 OO0APIDOD 000D OO0 O00O0OO0.0 00 00000 4,5,60 00 000
D0000 GraphQLO O OOOOO EnumO0D0 DODODD Enumd DODOD 0DD0ODD 0D 0D 00O
0.?

List resolvers

O00 OO0 appearsIn000 OO0 OO0 O0O0 ODODO O OO OO ODOO0OD OO O0ODOODO
.00 b0 ddd o0 bbb o0 oo bbb oo oo bbb O ooo boo
O0D0 000 00 0000000, starships 000 OOO0O0 000 OoO0O2?”

Human
starships(obj, args, context, info
obj.starshipIDs.map
id context.db.loadStarshipByID(id).then
shipData Starship(shipData

0000 0000000000000 00000000000 00000.HumanOOOO O
00 000 StarshipsD IDOOD OO0OO OO StarshipOODO ODO0O0O OO DO OO0 ODO0OO O
oo

GraphQLOD 0000 OO0 00D 00O 000 00D 000O0,00 0000000000 000
name 000 O0OO0O OO0 OO0 OO oOoooO.?

Producing the resuit

O00b00ob0ooobo0oooobo(@uooo)yY obo,b0b0 D0 bOb0b bOobobD b-O0 00
gooogo.0bog oo bbb oobb oL oo oD oo boob oobobo.boobag
OO0 0000 o0 obo obooob bbb Db b Dboo obobooo ob b ooobE@

OO0oo JSONO D).

00000000000 0000000 0000 00 00 00000000 ooooooon®

https://moro.kr/ Printed on 2023/12/11 17:26

2023/12/11 17:26

5/7

GraphQL Execution

{
human(id: 1002) {

name
appearsIn
starships {
name
}
}
}

Continue Reading

e Introspection

0o o

Plugin Backlinks: OO 00O O00O0O0O.

1)

{
"data": {
"human": {

"name": "Han Solo",
"appearsIn": [
"NEWHOPE" ,
"EMPIRE",

"JEDI"
1,
"starships": [
{
"name": "Millenium
Falcon"
b
{
"name": "Imperial
shuttle"
}
]
}
}
}

After being validated, a GraphQL query is executed by a GraphQL server which returns a result that
mirrors the shape of the requested query, typically as JSON.

2)

GraphQL cannot execute a query without a type system, let's use an example type system to
illustrate executing a query. This is a part of the same type system used throughout the examples in

these articles:
3)

In order to describe what happens when a query is executed, let's use an example to walk through.

4)

You can think of each field in a GraphQL query as a function or method of the previous type which
returns the next type. In fact, this is exactly how GraphQL works. Each field on each type is backed by
a function called the resolver which is provided by the GraphQL server developer. When a field is
executed, the corresponding resolver is called to produce the next value.

5)

If a field produces a scalar value like a string or number, then the execution completes. However if a
field produces an object value then the query will contain another selection of fields which apply to
that object. This continues until scalar values are reached. GraphQL queries always end at scalar

Various Ways - https://moro.kr/

https://moro.kr/open/graphql-introspection

Last update: 2022/09/01 08:28 open:graphgl-execution https://moro.kr/open/graphgl-execution

values.
6)

At the top level of every GraphQL server is a type that represents all of the possible entry points into
the GraphQL API, it's often called the Root type or the Query type.

7)
In this example, our Query type provides a field called human which accepts the argument id. The

resolver function for this field likely accesses a database and then constructs and returns a Human

object.
8)

This example is written in JavaScript, however GraphQL servers can be built in many different

languages. A resolver function receives four arguments:
9)

The previous object, which for a field on the root Query type is often not used.
10)

The arguments provided to the field in the GraphQL query.

11)

b gobb obboo b0 boboo b b boboobobo bbb obboo bbb bbo bobo

oo ooobooaag.
12)

A value which holds field-specific information relevant to the current query as well as the schema

details, also refer to type GraphQLResolvelnfo for more details.
13)

Let's take a closer look at what's happening in this resolver function.
14)

The context is used to provide access to a database which is used to load the data for a user by the id
provided as an argument in the GraphQL query. Since loading from a database is an asynchronous
operation, this returns a Promise. In JavaScript, Promises are used to work with asynchronous values,
but the same concept exists in many languages, often called Futures, Tasks or Deferred. When the

database returns, we can construct and return a new Human object.
15)

Notice that while the resolver function needs to be aware of Promises, the GraphQL query does not. It
simply expects the human field to return something which it can then ask the name of. During
execution, GraphQL will wait for Promises, Futures, and Tasks to complete before continuing and will

do so with optimal concurrency.
16)

Now that a Human object is available, GraphQL execution can continue with the fields requested on it.
17)

A GraphQL server is powered by a type system which is used to determine what to do next. Even
before the human field returns anything, GraphQL knows that the next step will be to resolve fields on

the Human type since the type system tells it that the human field will return a Human.
18)

Resolving the name in this case is very straight-forward. The name resolver function is called and the
obj argument is the new Human object returned from the previous field. In this case, we expect that

Human object to have a name property which we can read and return directly.
19)

In fact, many GraphQL libraries will let you omit resolvers this simple and will just assume that if a

resolver isn't provided for a field, that a property of the same name should be read and returned.
20)

While the name field is being resolved, the appearsin and starships fields can be resolved

concurrently. The appearsin field could also have a trivial resolver, but let's take a closer look:
21)

Notice that our type system claims appearsin will return Enum values with known values, however
this function is returning numbers! Indeed if we look up at the result we'll see that the appropriate

Enum values are being returned. What's going on?
22)

https://moro.kr/ Printed on 2023/12/11 17:26

https://graphql.org/graphql-js/type/#graphqlobjecttype

2023/12/11 17:26 717 GraphQL Execution

This is an example of scalar coercion. The type system knows what to expect and will convert the
values returned by a resolver function into something that upholds the API contract. In this case,
there may be an Enum defined on our server which uses numbers like 4, 5, and 6 internally, but

represents them as Enum values in the GraphQL type system.
23)

We've already seen a bit of what happens when a field returns a list of things with the appearsin field
above. It returned a list of enum values, and since that's what the type system expected, each item in
the list was coerced to the appropriate enum value. What happens when the starships field is

resolved?
24)

The resolver for this field is not just returning a Promise, it's returning a list of Promises. The Human
object had a list of ids of the Starships they piloted, but we need to go load all of those ids to get real
Starship objects.

25)

GraphQL will wait for all of these Promises concurrently before continuing, and when left with a list of

objects, it will concurrently continue yet again to load the name field on each of these items.
26)

As each field is resolved, the resulting value is placed into a key-value map with the field name (or
alias) as the key and the resolved value as the value. This continues from the bottom leaf fields of the
query all the way back up to the original field on the root Query type. Collectively these produce a
structure that mirrors the original query which can then be sent (typically as JSON) to the client which

requested it.
27)

Let's take one last look at the original query to see how all these resolving functions produce a result:

From:
https://moro.kr/ - Various Ways

Permanent link:
https://moro.kr/open/graphql-execution

Last update: 2022/09/01 08:28

Various Ways - https://moro.kr/

https://moro.kr/
https://moro.kr/open/graphql-execution

	GraphQL Execution
	Root fields & resolvers
	Asynchronous resolvers
	Trivial resolvers
	Scalar coercion
	List resolvers
	Producing the result
	Continue Reading
	관련 문서

