
2023/09/25 07:57 1/7 Deep Learning with Keras

Various Ways - https://jace.link/

Deep Learning with Keras

Perceptron
Generative Adversarial Networks and WaveNet
Word Embeddings
Recurrent Neural Network — RNN

Keras API

Keras has a modular, minimalist, and easy extendable architecture. Francois Chollet, the author of
Keras, says:

The library was developed with a focus on enabling fast experimentation. Being able to go from idea
to result with the least possible delay is key to doing good research.

Keras defineds high-level neural networks running on top of either TensorFlow or Theano

Modularity: A model is either a sequence or a graph of standalone modules that can be
combined together like LEGO blocks for building neural networks. Namely, the library predefines
a very large number of modules implementing different types of neural layers, cost functions,
optimizers, initialization schemes, activation functions, and regularization schemes.
Minimalism: The library is implemented in Python and each module is kept short and self-
describing.
Easy extensiblity: The library can be extended with new functionalities, as we will describe in
Chapter 7, Additional Deep Learning Models.

What is tensor?

Keras uses either Theano or TensorFlow to perform very efficient computations on tensors. But what
is a tensor anyway? A tensor is nothing but a multidimensional array or matrix. Both the backends are
capable of efficient symbolic computations on tensors, which are the fundamental building blocks for
createing neural networks.

Composing models in Keras

There are two ways to composing models in Keras. They are as follows:

Sequential composition
Functional composition

Regular dense

snippet.python

https://jace.link/open/perceptron
https://jace.link/open/generative-adversarial-networks-and-wavenet
https://jace.link/open/word-embeddings
https://jace.link/open/recurrent-neural-network-rnn
https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=0

Last update: 2020/06/02 09:25 open:deep-learning-with-keras https://jace.link/open/deep-learning-with-keras

https://jace.link/ Printed on 2023/09/25 07:57

keras.layers.core.Dense(units, activation=None, use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros',
kernel_regularizer=None, bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None,
bias_constraint=None)

Recurrent neural networks - simple, LSTM, and GRU

snippet.python

keras.layers.recurrent.Recurrent(return_sequences=False,
go_backwards=False, stateful=False, unroll=False, implementation=0)

keras.layers.recurrent.SimpleRNN(units, activation='tanh',
use_bias=True, kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal', bias_initializer='zeros',
kernel_regularizer=None, recurrent_regularizer=None,
bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)

keras.layers.recurrent.GRU(units, activation='tanh',
recurrent_activation='hard_sigmoid', use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal', bias_initializer='zeros',
kernel_regularizer=None, recurrent_regularizer=None,
bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)

keras.layers.recurrent.LSTM(units, activation='tanh',
recurrent_activation='hard_sigmoid', use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal', bias_initializer='zeros',
unit_forget_bias=True, kernel_regularizer=None,
recurrent_regularizer=None, bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None,
recurrent_constraint=None, bias_constraint=None, dropout=0.0,
recurrent_dropout=0.0)

Convolutional and pooling layers

snippet.python

https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=1
https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=2

2023/09/25 07:57 3/7 Deep Learning with Keras

Various Ways - https://jace.link/

keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1,
padding='valid', dilation_rate=1, activation=None, use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros',
kernel_regularizer=None, bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None,
bias_constraint=None)

keras.layers.convolutional.Conv2D(filters, kernel_size, strides=(1, 1),
padding='valid', data_format=None, dilation_rate=(1, 1),
activation=None, use_bias=True, kernel_initializer='glorot_uniform',
bias_initializer='zeros', kernel_regularizer=None,
bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, bias_constraint=None)

keras.layers.pooling.MaxPooling1D(pool_size=2, strides=None,
padding='valid')

keras.layers.pooling.MaxPooling2D(pool_size=(2, 2), strides=None,
padding='valid', data_format=None)

Regularization

kernelregularizer: Regularizer function applied to the weight matrix - biasregularizer:
Regularizer function applied to the bias vector
activity_regularizer: Regularizer function applied to the output of the layer (its activation)

In addition is possible to use Dropout for regularization and that is frequently a very effective choice

snippet.python

keras.layers.core.Dropout(rate, noise_shape=None, seed=None)

Where: - rate: It is a float between 0 and 1 which represents the fraction of the input units to drop -
noise_shape: It is a 1D integer tensor which represents the shape of the binary dropout mask that will
be multiplied with the input - seed: It is a integer which is used use as random seed

Batch normalization

snippet.python

keras.layers.normalization.BatchNormalization(axis=-1, momentum=0.99,
epsilon=0.001, center=True, scale=True, beta_initializer='zeros',
gamma_initializer='ones', moving_mean_initializer='zeros',
moving_variance_initializer='ones', beta_regularizer=None,

https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=3
https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=4

Last update: 2020/06/02 09:25 open:deep-learning-with-keras https://jace.link/open/deep-learning-with-keras

https://jace.link/ Printed on 2023/09/25 07:57

gamma_regularizer=None, beta_constraint=None, gamma_constraint=None)

An overview of optimizers

Optimizers include SGD, RMSprop, and Adam.

Using TensorBoard and Keras

Keras provides a callback for saving your training and test metrics, as well as activation histograms
for the diffrerent layers in your model:

snippet.python

keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq=0,
write_graph=True, write_images=False)

Saved data can then be visualized with TensorBoard launched at the command line:

snippet.shell

tensorboard --logdir=/full_path_to_your_logs

Using Quiver and Keras

snippet.python

pip install quiver_engine

from quiver_engine import server server.launch(model)

Pooling layers

Max-pooling

snippet.python

https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=5
https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=6
https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=7
https://jace.link/lib/exe/fetch.php?tok=07b9eb&media=https%3A%2F%2Fwww.safaribooksonline.com%2Flibrary%2Fview%2Fdeep-learning-with%2F9781787128422%2Fassets%2Fimage_02_028.png
https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=8

2023/09/25 07:57 5/7 Deep Learning with Keras

Various Ways - https://jace.link/

model.add(MaxPooling2D(pool_size = (2, 2)))

Average pooling

LeNet code in Keras

To define LeNet code, we use a convolutional 2D module, which is:

snippet.python

keras.layers.convolutional.Conv2D(filters, kernel_size,
padding='valid')

Here, filters is the number of convolution kernels to use (for exampel, the dimensionality of the
output), kernel_size is an integer or tuple/list of two integers, specifying the width the same value
for all spatial dimensions), and padding='same' means that padding is used. There are two options:
padding='valid' means that the convolution is only computed where the input and the filter fully
overlap, and therefore the output is smaller than the input, while padding='same' means that we
have an output that the same size as the input, for which the area around the input is padded with
zeros.

In addition, we use a MaxPooling2D module:

snippet.python

keras.layers.pooling.MaxPooling2D(pool_size=(2,2), strides=(2,2))

Here, pool_size=(2,2) is a tuple of two integers representing the factors by which the image is
vertically and horizontally downsacled. So (2,2) will halve the image in each dimension, and
strides=(2,2) is the stride used for processing.

Now, let us review the code. First we import a number of modules:

snippet.python

from keras import backend as K
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dense
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import SGD, RMSprop, Adam

https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=9
https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=10
https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=11

Last update: 2020/06/02 09:25 open:deep-learning-with-keras https://jace.link/open/deep-learning-with-keras

https://jace.link/ Printed on 2023/09/25 07:57

import numpy as np
import matplotlib.pyplot as plt

Then we define the LeNet network:

snippet.python

#define the ConvNet
class LeNet:
 @staticmethod
 def build(input_shape, classes):
 model = Sequential()
 # CONV => RELU => POOL

snippet.python

model.add(Convolution2D(20, kernel_size=5, padding="same",
input_shape=input_shape))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
CONV => RELU => POOL

model.add(Conv2D(50, kernel_size=5, border_mode="same"))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

Flatten => RELU layers
model.add(Flatten())
model.add(Dense(500))
model.add(Activation("relu"))
a softmax classifier
model.add(Dense(classes))
model.add(Activation("softmax"))
return model

관련 문서

Keras

https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=12
https://jace.link/_export/code/open/deep-learning-with-keras?codeblock=13
https://jace.link/open/keras

2023/09/25 07:57 7/7 Deep Learning with Keras

Various Ways - https://jace.link/

From:
https://jace.link/ - Various Ways

Permanent link:
https://jace.link/open/deep-learning-with-keras

Last update: 2020/06/02 09:25

https://jace.link/
https://jace.link/open/deep-learning-with-keras

	Deep Learning with Keras
	Keras API
	What is tensor?
	Composing models in Keras
	Regular dense
	Recurrent neural networks - simple, LSTM, and GRU
	Convolutional and pooling layers
	Regularization
	Batch normalization
	An overview of optimizers
	Using TensorBoard and Keras
	Using Quiver and Keras
	Pooling layers
	Max-pooling
	Average pooling

	LeNet code in Keras
	관련 문서

